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Saliency ship detection has received increasing attention due to its important applications in maritime field in recent 

years. Up to now, numerous studies on saliency detection have been done based on traditional methods and deep 

learning methods. But these previous research works are still not competent enough in detecting ship targets with 

complex backgrounds and noises. In this letter, we propose a deep attention mechanism method for more accurate and 

faster maritime salient ship detection. We optimize the initial ship saliency map by using a feature attention module to 

focus on salient objects. We reduce and improve the convolution kernel in refinement residual module to enhance the 

detection efficiency. In addition, Leaky ReLU is selected as the activation function to increase the non-linear capabil-

ity of the method. Experiment results show that, the proposed method could obtain outstanding performance in salient 

ship detection in complex sea background. 
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Salient ship detection aims to highlight the most promi-
nent ship target in an image. It has been widely used to 
monitor and ensure the safety of ocean and inland rivers 
in maritime field. However, it is still a challenging 
branch of saliency detection[1,2], especially in complex 
sea environment.  

Methods used before could been divided into two 
kinds: the traditional methods[3-5] and deep learning 
methods[6-9]. The traditional methods of extracting ships' 
shape, contour and texture features are usually not robust 
enough. For instance, Cane et al[3] presented a method for 
ship detection and tracking based on visual saliency to 
suppress the wave and reflected light in maritime envi-
ronments. But it could not detect distant and dim objects 
well. Xu et al[4] also proposed an unsupervised ship de-
tection method based on visual saliency. Ship targets are 
characterized by histograms of oriented gradient (HOG) 
descriptor. But the result of the method still could not 
meet the demand in reality. Bao et al[5] proposed a cabin 
feature detector. It created a detector by training ship 
features and combined context and motion saliency 
analysis. But this detector is completely dependent on the 
training set size. It is not a universally applicable method. 
Compared to traditional methods, deep learning methods 
have greatly promoted the effect of saliency detection, 
but it  still has some unsolved problems when the detec-
tion is affected by distance, sea clutter, light intensity, 
weather changes and so on. For example, Bi et al[6] ex-
tracted salient candidate regions from the entire detection 

scene by using a bottom-up visual attention mechanism. 
Its appearance and neighborhood similarity features are 
combined to further discriminate the salient regions. But 
its real-time performance is not satisfying. Lin et al[7] 
implemented a partitioning task model with the deep 
path for attention/saliency maps and the shallow path for 
detection. But this method is unable to provide predic-
tions on the direction of the proposed candidates. Mum-
taz et al[8] used the graph-based visual saliency algorithm 
to calculate the saliency map, and then the saliency map 
is processed by multi-level threshold to obtain the or-
dered saliency area of input image. However, multiple 
experiments should be done to obtain an appropriate 
cluster selection threshold. Shao[9] proposed a salien-
cy-aware  convolutional neural network (CNN) frame-
work for ship detection. It extracted coastline features 
and incorporate them into CNN to improve the robust-
ness and efficiency of the ship detection. However, It is 
most effective only in inshore ship detection. 

In this letter, we propose a deep attention mechanism 
(DAM) framework. Different from existing salient 
methods for ship detection, our framework adds a feature 
attention module (FAM) after extracting high-level se-
mantic features, which not only could focus the operation 
on the specific ship area, but also could enhance the re-
gional features of this part. At the same time, a refine-
ment residual module (RRM) with Leaky ReLU[10] acti-
vation function is also used in this framework to refine 
the initial saliency map. The architecture of DAM is 



ZHOU et al.                                                                Optoelectron. Lett. Vol.17 No.7·0439· 

shown in Fig.1.  
 

 
Fig.1 The proposed DAM framework 

 
As shown in Fig.1, the framework consists of three 

parts. The first part is the feature extraction network, 
which collects both low-level semantic features (SL) and 
high-level semantic features (SH) maps. Resnet-101 is 
used as the backbone network and is divided into five 
stages. The first three stages are used to extract SL, and 
latter two stages are used to extract SH. The characteris-
tics of different layers of network are complementary 

[11,12]. In ship detection, SH usually contains global con-
text-aware information, which are suitable for locating 
ship area correctly, while SL contains spatial structure 
details, which are more suitable for locating ship bound-
ary. In the second part, an FAM is added after extracting 
SH to generate an initial ship saliency map. After that, in 
the third part, RRM is then designed to refine the initial 
saliency map by integrating with SL information. It is a 
gradual optimization process of the initial saliency map. 
The “Concat” model shown in Fig.1 is used to do con-
catenation operation. A supervision signal[13] is also ap-
plied at each step to improve the final ship saliency pre-
diction map gradually. This could help to compute the 
loss between the predicted saliency map and Ground 
Truth (GT) mask during the training process. In addition, 
the Leaky ReLU activation function is selected in RRM 
to improve the nonlinear capability of the framework and 
reduce the training loss.  The details of the framework 
will be explained as follows. 

As we mentioned above, the initial saliency map 
should be refined for an accurate result. However, the 
refinement will be severely affected by different kinds of 
noises at the beginning of the detection. That’s one of the 
major difficulties in detecting marine targets in complex 
backgrounds. Considering that there are few semantic 
differences between SL compared to SH, FAM is de-
signed and used just after extracting the SH information 
to improve the effectiveness of the initial saliency map. 
FAM simulates the human visual attention mechanism, 
which ignores the global information temporarily, and 
focuses on the ship target we are concerned with. The 
architecture of the FAM is shown in Fig.2. Once FAM 
receives SH information, it will be convoluted with 
Gaussian kernel[14]. Then the results will be normalized 

to obtain the maximum value of the input, which makes 
the system focus the attention on local salient ship area, 
and extract the most prominent ship target from the im-
age. 

 

  
Fig.2 Architecture of FAM 

 
FAM could also be expressed by 
Sa=MAX(fmin−max(Con(g, Si)), Si),               (1) 
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f x
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where Sa is the initial salient signal we obtained by FAM, 
Con(g, Si) is a convolution operation with a Gaussian 
kernel g, which is set to 32 initially. Gaussian’s bias is 
set to 0, and the standard bias is set to 4 in our frame-
work. Si represents the SH. fmin−max is a normalization 
function, which is illustrated in Eq.(2), and its result will 
be mapped in [0, 1]. MAX is a function that takes the 
maximum value as the salient region of the input dataset. 
Eq.(2) is the definition for fmin−max(x) function, xmin and 
xmax respectively represent the minimum and maximum 
values of the sample data. 

RRM could optimize the initial salient map output by 
FAM. This model learns from the experiences of edge 
and feature optimizing, and processes the feature map 
alternatively from SL and SH with “concat” operation. 
To reduce the overfitting, GT is used as a supervised 
signal during training. The function of RRM module 
could also be defined as 

Sr= Convj(concat(Sj−1, F)),                    (3) 
Sj=Sj−1+Sr,                                 (4) 

where Sj represents the saliency signal of jth RRM, F is 
the feature maps, concat represents concatenation opera-
tion. Convj indicates the concatenation of the predicted 
saliency map Sj−1 and the feature maps F, the value range 
of j is [1, 3]. Sr is the residual. Eq.(4) indicates that the 
residual is added with Sj−1 to compute the output Sj in 
RRM.  

The architecture of RRM is shown in Fig.3. It is com-
posed of three 3×3, one 1×1 convolution kernels and 
Leaky ReLU activation function. The advantage of using 
three 3×3 convolutions is that the nonlinear ability of the 
network could be increased without changing the recep-
tive field of the convolutional layer. And following of 
the 1×1 convolution kernel can lower the dimension and 
reduce the computational cost greatly. In addition, due to
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the fact that an appropriate activation function could help 
to improve the expressive ability of our network, Leaky 
ReLU is selected to ensure the ship detection efficiency 
in complex backgrounds. In RRM, Leaky ReLU activa-
tion function is used between every two convolution 
kernels. It is based on ReLU and has solved the hard 
saturation problem of ReLU. Tab.1 shows the training 
loss of Leaky ReLU and other three activation functions, 
which are all typically used in deep learning methods. 
The values are obtained in the same configuration envi-
ronment and using the same dataset, the number of 
training step is 10 000. After comparison, we can find 
out that the training loss of Leaky ReLU is the smallest, 
and it is beneficial for reducing the loss of ship features 
during the detection process. 
 

 
Fig.3 Architecture of RRM   

 
Tab.1 Comparison of training loss of four activation 
functions 

Activation Train loss 

ReLU 0.101 85 

ELU 

PReLU 

0.102 62 

0.101 63 

Leaky ReLU 0.100 84 

 
To test the performance of DAM, we constructed a 

new challenging dataset by riching different ship images. 
Images of the dataset are mainly captured by our team or 
collected from Singapore maritime dataset (SMD)[15]. It 
contains 400 ship images with more than 1000 ship tar-
gets in different kinds of ocean environments. Fig.4 
shows some ship images and their GT in our dataset. It’s 
worth mentioning that ships usually occupy less area 
compared with background in the images. And the sea 
and sky background of the image are always disturbed by 
noises of waves, islands, ripples and so on. For our per-
formance evaluation, 320 images are randomly selected 
as training images and 80 as test images. So the appear-
ance of ships in the test images are randomly different 
with ships in training set, what could further test the 
generalization of our network. 

Besides our ship dataset, MSRA10K dataset[16] is also 
used to pre-train the DAM. MSRA10K dataset contains 
10 000 images of different scenes. Its large scale could 

help improve the detection performance and remedy the 
deficiency of our ship dataset. Our evaluation experi-
ments are also done on other five saliency detection 
benchmark datasets for comparison, including ECSSD[17], 
HKU-IS[11], PASCAL-S[18], DUT-OMRON[19], SOD[19].  

 

  
Fig.4 Ship images and their GT in our ship dataset 
 
In the letter, two widely used indicators are selected as 

our evaluation indexes: mean absolute error (MAE) and 
F-measure (Fβ). Fβ is the weighted harmonic mean of the 
recall and precision under non-negative weight β. β2 is 
taken as 0.3 here  as suggested by previous works[20,21]. 
As we know, a good saliency detection model should 
have a large Fβ and a small MAE. 

The definitions of MAE and Fβ are 

   
1 1

1
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where S(x, y) is the saliency map output by the network, 
G(x, y) represents GT, W and H are the width and height 
of saliency map. And precision and recall are defined as 

S G
precision

S


 ,                          (7) 

S G
recall

G


 .                            (8) 

From Eqs.(7) and (8), we can find out that “precision” 
is the ratio of the number of successfully detected targets 
to the number of all detected targets, “recall” is the ratio 
of the number of successfully detected targets to the 
number of ground truth targets. 

Our training and test are operated based on Pytorch1.0, 
Ubuntu 16.04 system, and GTX 1080Ti GPU. Res-
Net-101 network is used to initialize parameters of fea-
ture extraction network, and the default setting of 
Pytorch is used to initialize other convolutional layers 
to speed up the training process and avoid over-fitting 
problems. The proposed model was trained by Adam
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optimizer[22] with a Momentum of 0.9, a decay of 
0.000 5, a batch size of 14. The basic learning rate is 
set to 10-3, we use the "poly" learning rate policy and 
stop the training procedure after 10k iterations.  

Fig.5 is the loss curve obtained during training. From 
it, we can see that, the loss decreased rapidly in the first 
2k iterations, and then it flattens out. Finally, its value 
stabilizes at 0.1 after 8k—10k iterations. Thus, we de-
termine to stop the train after 10k iterations. 

 

 
Fig.5 Training loss curve 

 
The test results of our method are shown in Tab.2. 

MAE and Fβ in Tab.2 reflect the detection capability of 
DAM. Fig.6 shows a part of detection results with our 
ship dataset. From it, we can easily find out that, in most 
real marine environment, the ship edge could be well 
detected using our algorithm, and the difference is small 
between our results and GT.  

 
Tab.2 The indicators result of DAM with our ship da-
taset 

Method MAE Fβ 

DAM 0.002 1 0.938 

 

 

 

Fig.6 Some test results of our DAM framework 
 

In order to fully verify the validity of the proposed 
method and prove the effect of our method in ship detec-
tion, we compared the processing result of DAM with the 
result of other ship detection frameworks using the same 
evaluation indicators –MAE, Fβ and detection time. The 
comparison results are shown in Tab.3, Figs.7 and 8. 
Figs.7 and 8 are respectively the comparison result of 
MAE and F in graph and histogram style. They could pro-
vide more intuitive result. From them three, we can see 
that DAM obtained a relative small MAE and the largest 
Fβ. It also has a relatively little time consumption in ship 
detection. Therefore, it can be inferred that our proposed 
framework has a strong detection capability and a good 
performance on the practical application of ship detection. 
 

Tab.3 Comparison of detection result 

Method MAE Fβ Time (s)

ALB[23] 0.075 1 / / 

BMS[24] 0.047 0 / / 

LIU[25] 0.241 7 / / 

MAK[26] 0.009 1 / / 

SDMOT[3] 0.005 7 / / 

IR[27] / 0.8 / 

STSD[28] / 0.815 / 

SDE[4] / 0.73 / 

ISR[29] / 0.924 0.453 

CMBSD[29] / 0.785 0.185 

CFD[5] / 0.717 0.365 

Cabin-detector[30] / 0.777 / 

GBVS[27] / 0.58 / 

AMISD[31] / 0.899 / 

TPISD[32] / 0.92 / 

SBAS[8] / 0.90 / 

DAM (ours) 0.002 1 0.938 0.162 

Input             GT         Our result
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Fig.7 MAE comparison between DAM and other ship 
detection algorithms 
 

 
Fig.8 Fβ comparison between DAM and other ship 
detection algorithms 
 

In this paper, we propose a DAM framework for ac-
curate and fast maritime salient ship detection. Consid-
ering the particularity of ship targets, DAM adds FAM 
after feature extraction network to extract the initial sa-
liency map, and improves the convolution layer and ac-
tivation function of RRM to optimize the saliency map 
step-by-step. The experimental results show that our 
method can obtain a good performance in maritime sali-
ency ship detection. Although our method executes bet-
ter compared with other ship detection algorithms, it still 
would lose some ship edge information. In the future, we 
will further improve RRM to gain a better result. 
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